
Tips for Writing Software Development Specs
Revised: February 2018

This document provides tips and examples of successful
techniques for writing end-user requirement specifications
(“specs”) for a software development project.

Specs vs. Research Specs: What’s the difference?
This document specifically relates to the detailed technical spec that will be
used by a programmer to code the software changes. If you are at the
stage of trying to gain support for a proposed project, or if you need to get
estimates of the amount of effort involved for the purpose of evaluating
costs, a Research Spec may be more appropriate.

We often start our custom projects for credit unions, as well as our major
development projects, with a research spec overview. That way we can get
buy-in and make sure everyone is on the same page and agrees to the
project scope, before spending the time and energy on detailed technical
specs. For instructions, refer to the Research Spec template.

Contents

What Makes a Good Spec?.................................... 1
Key Components Your Spec Should Contain 1
Other Things That Lead to Good Specs 3

Tips on Constructing a Spec Document 3
Using Our Word Template .. 3
Techniques for Making Host Screen Mockups 3

Other Helpful Resources 4

What Makes a Good Spec?
Writing a project spec requires the ability to imagine and clearly explain a big-picture, high level overview of a
project, as well as get down to the nitty-gritty details that define how the software will behave and what the
end-user experience will be.

Key Components Your Spec Should Contain
Part 1: Introduction/Project

Overview
This is the elevator speech that defines the overall scope of the
project, introduces key concepts, and explains the overall purpose
and goals of why the project needs to be done. Imagine explaining
your vision to a colleague at another credit union. Items to include
in this section:

• Purpose and goals of the project; expectations from an end-
user’s standpoint

• Timeline and general deadline, if any (i.e., reg. change date,
etc.)

• Outline of any future enhancements anticipated in the long
term

• Suggested content for the Release Summary (marketing spin)

Part 2: Program Changes
Overview

A quick overview of what new tables, new columns. or program
changes, if any, are anticipated with the project.

Part 3: Changes to Screens, New
Screens, Workflow, Field
Specifications

This is the meat of the spec and includes mockups of how the
screen(s) should look, changes to screen layout, instructions on
workflow, detailed field specifications, descriptions of how all
command keys should work, and so on.

Every screen throughout CU*BASE that will be affected must be
detailed. Do Account Inquiry screens need to change? Which
ones? How? Do the main Phone Op, Inquiry and/or Teller Verify

Member screens need to be modified? How? What about
maintenance screens such as Update Membership Info or Update
Account Info? Which screens and how? All screen changes must be
clearly mocked up and included in the spec document itself (not
screen prints with handwriting on them).

These sections should also include specific messages and
verifications the program should use to prevent common user
mistakes. We call these edits and they are generally instructions
like this: “If Activate... is set to Y, also require a valid, eligible
account # to be entered.”

Part 4: Changes to Reports and
Report Selection Screens

If a report is involved, whether a new one or changes to an existing
one, include a mockup of the changes to the report selection
screen. Also include a sample of the printed report with specifics on
how the data will lay out, mocked up with sample data.

Part 5: Tool Changes A list of new tools that might be needed, with suggested tool
title, description and program information.

Consider the following examples:

Sample Project Overview
Instead of: Try something like this:

Create a debit card round
up program to round up
purchases to the nearest
dollar and deposit them to
a savings account.

This project represents our take on the KeepTheChange© program from Bank of
America and similar programs that help members save by automatically
rounding up each purchase made via a debit card and depositing the extra
money into a designated savings account.

The most important element of this product is one that might not be obvious at
first glance when you read marketing materials from BofA and other financial
institutions: The round up process is not posted immediately, on a per-
transaction basis. Instead, a daily process will calculate the round up amount
for all debit card transactions posted that day and post a single transfer from
the checking account to the savings account.

To put it another way, if you go to Macy's and spend $94.73, the transaction
that posts to your account will be exactly $94.73, not $95.00. At the end of the
day, that extra 27¢ (along with any other amounts calculated on other
purchases throughout the day) will be transferred from your checking to your
savings account.

Sample Programming Instruction
Instead of: Try something like this:

Write out a Tracker
record

• When the user presses F10 to save the CTR at any point (every time it gets
edited, whether the first time through or later on), write a note to the member's
Audit Tracker (Type AT) - don't need to display any Tracker screens for user input
or provide any confirmation message; just create the note behind the scenes:

• Use Memo Code CT (code description “CTR form”)
• CONVERSION NOTE: Doesn't look like this is one of our standard ones, but will

still need to verify all CU configs for this memo code; please advise if this is
already used by any CUs, then arrange for a conversion program to create this
code in all CU libraries upon implementation

• Use the following text in the Tracker note: “CTR form created / modified” and
include the date and time, Employee ID, and CTR form number.

See the difference?

Other Things That Lead to Good Specs

• Use examples to illustrate complex calculations or scenarios that the software is intended to handle. If
you are mocking up a screen sample, put in some realistic data to help illustrate how it will look and be
used.

• Include more detail than what you think the programmer needs. Don't make assumptions. Better to be
too clear than to leave something out.

• If you are making a change to an existing screen or feature, showing both a before and after view can
make it much easier to see what is changing, especially if there are a lot of new features or elements are
being rearranged significantly.

• Remember that the project must be testable, so thinking about how you might test the changes can
help you write clearer, more complete instructions in the specs.

• Include notes about converting existing data to any new uses/formats.

• Include documentation/end-user notes to explain difficult concepts or to justify a particular method
selected (i.e., why did you do it that way?).

• Keep the end-user in mind and anticipate their questions to make the workflow, field labels, and layout
as intuitive and easy to use as possible. Longer field labels are better than short ones if they eliminate
questions and keep someone from having to open help or call a CSR.

• Follow standard screen layout conventions for consistency and to make the software easy to learn.
(Refer to the User Interface Style Guide for current standards for CU*BASE host screen elements.)

Tips on Constructing a Spec Document
Using Our Word Template
You can organize and format your spec document any way you wish, but if you want a sample layout to get
started, start with the Project Spec template that our designers use. Then simply copy, delete, rearrange, and
modify the sample content from this template as needed.

Techniques for Making Host Screen Mockups
Use the method that our spec writers do to mock up a host screen change. If you right-click on the title bar of
any CU*BASE GOLD screen and choose Show Emulator you'll see what a host screen looks like. By copying this
plain-text data into a properly formatted Word document, you can manually type field labels and rearrange
screen information as needed to illustrate how the user interface should look. A sample blank screen is
provided in the Word template. This format is particularly handy because it makes it easy to show field lengths.

If you are modifying an existing screen, follow these steps to pull the existing screen into your spec:

1. Navigate to the screen in CU*BASE GOLD

http://www.cuanswers.com/spec-contest/Project_specs.dot

2. If you haven't already, right-click on the title bar and choose Show Emulator to view a separate window
showing the host layout

3. With your mouse, click and drag to drag a rectangle around the entire colored area of the screen. When
you let go of the mouse, everything in the outlined area is automatically copied to your clipboard (you
don't have to choose copy)

4. In your Word document, position the cursor where the screen should appear
5. Apply the ScreenShots3 style
6. From the Edit menu, choose Paste

Other Helpful Resources
If you want to see some samples of specs from recent projects, contact Dawn Moore at
dmoore@cuanswers.com. We can pass along the spec from a specific project or just provide a sampling of
several different-sized projects, including some that have been implemented as well as ones that are currently in
development.

	Tips for Writing Software Development Specs
	What Makes a Good Spec?
	Key Components Your Spec Should Contain
	Sample Project Overview
	Sample Programming Instruction

	Other Things That Lead to Good Specs

	Tips on Constructing a Spec Document
	Using Our Word Template
	Techniques for Making Host Screen Mockups

	Other Helpful Resources

